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SIGNIFICANCE AND EXPLANATION

In applications there arise nonlinear partial differential equations

which change type at points where the solution takes on certain values.

Examples are heat flow with a temperature dependent conductivity and the flow

of a gas through a porous medium. Only in recent years has there been

developed a fairly broad theory which permits one to prove existence of

solutions to such equations. These solutions are defined in a generalized or

weak sense, and it is not known, a priori, whether the solution has the

derivatives appearing in the equation in a classical sense. In general, one

is interested in knowing what smoothness or regularity properties the solution

possesses.

In this paper we study the solutions to a certain class of such singular

equations where the solution is required to satisfy given initial and boundary

conditions. The principal result is that the solution is continuous at

interior points of its domain of definition. As a by product of the

techniques used here, we obtain a new proof of the existence of such

solutions. In the case of unbounded space domains some of the existence

results so obtained are new.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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EXISTENCE AND REGULARITY OF SOLUTIONS OF
INHOMOGFNEOUS POROUS MEDIUM TYPE EQUATIONS

Paul Sacks

SECTION 0.

In this paper we will discuss some regularity results for partial differential

equations of degenerate parabolic type. The model equation to have in mind is the porous

medium equation

v t = Mv = V-(mvm Vv) (x,t) e Q x (0,T) (0.1I

For m * I the equation is singular or changes type at any point where the solution

vanishes, hence the standard quasilinear regularity theory (141 may not be applied

directly.

We will define a notion of weak solution for an initial and boundary value problem

associated with an equation of the type 0.1 and then prove interior continuity of these

solutions. There are basically two approaches to a problem of this sort; the first is to

assume that one has a given weak solution, and then to derive estimates for this function

dire,-tly from the definition of weak solution by choosing test functions in the right way.

This method is used by DiRenedetto [111, (181 to prove the regularity of weak solutions of

a wide -lass of equations, including 0.1, under some additional assumptions (e.g.

boundedness) not required by the definition of solution.

The second approach, which is the one to be used here, is to regularize the problem in

some way so that it falls under the classical quasilinear existence and regularity

theories; these approximate solutions are shown to converge to a solution of the orioinal
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problem. 4 priori estimates are derived for the approximations which then remain valid fr

their limit function. TIsinq this nethod we have an existence theorem an a Vv-oriu'+; iF

we have a uniqueness theorem, which is often the case, then we may say thal, the weak

solution of the initial and boundary value problem is continuous.

CafFarelli and Friedman ( !, (71) study the Cauchy problem for t1- ... uation 11.1 with

n > I and non-neg7ative initial data by replacing the initial data "t'x) hv
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and MNrS;Pn-nlq46.
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v0 (x) = v 0(x) + F. It follows from the maximum principle that the corresponding

solutions v (x,t) satisfy v (x,t; > c so that the equation never degenerates, and

furthermore that the sequence v (x,t) converges monotonically downwards to a limit

function v(x,-). An estimate due to Aronson and Benilan (11, which is special to this

problem, is then employed to obtain estimates on v (x,t) independently of e.

In the paper [51, Caffarelli and Evans outline a more general method; in this case the

equation itself is regularized with 0.1 being replaced by

m- 1
vt = V.((mv + t)Vv) .

SPecifically, they prove the fol'ainq.

Let Q be bounded in RN with smooth boundary. Let O(v) be a C' nondecreasing

function on R which "looks like" 1vm sign v for m > 1, (this will be made precise

later) and suppose (v (x)) e C (M). Then the problem
0 0

vt = A(M(v)) (x,t; e Q X (0,T)

0

v(x,t) = 0 x e 31

ha3 a unique solution v(x,t) e C(QT ).

In this naner we prove analogous results for the inhomoqeneous equation, and we

7onsider also the case of unbounded domains.

In t151 corresoonding results will be discussed for other type of nonlinearities, and

liffero.t initial and boundary conditions. Regularity up to the boundary will also he

dis ci?2 d there.

The methods employed here are princinally those of (1, combined with tecniquoes which

mav he found, for example, in [141.

I w',l like to thank M. Pierre, E. DiBenedetto, and especially M. CrandAllI.
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- ST U (Q x {t = 0}) if Q is a cylinder in fx,t) space. (This is the

parabolic boundary o'f Q). Otherwise this is the usual boundary.

IAI = Lebesque measure of the set A.

{v ) k) = set of points where v ) k.

a(R) - (x,t) e R +
l Ix - x0 1 < R, t0 - R < t < to. The subscript x0t

may be dropped if it is clear from the context.

f MaJE 0, f).

Vul, W = gradient and Laplacian in the space variables only.

C(QT) = continuous functions on QT"

DI (QT) =distributions on QT"

W 0QT) (u e L2(Q) u e L2(Q )

W'(QT fu e W' T u t 8 L *T

V 2(Q T ) (u : Sur fl(X,t)q 2 + VI.. < =}  = L'(0,T;L
2
(Q) ) L 2 (0 1T;H1(1)).

Ot<T L 12) L (QT)

A zero over any of these spaces indicates those functions which vanish on ST . The
N 3f,

summation convention is used, e.g. (f = i= -x (xt).

SECTION 1.

We consider the followinq init i. and boundary value problem

IM(u)i t = Au r (x,t) eQT

r(x,O? " (X b X e .0 (1.1)

ul R

N
where Q is a bou-,1',d doi-,ain in R with smooth hounlary.

we first describe t'e assumptions to be made )r. u0 (x), F and '.

HI) u (x) P- L (Q)
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For the purpose of stating the hypothesis on F we introduce some more notation.

G (Q ) = [F @ D'(QT) : F = f0 + (f )x.'f0,f2 e L(QT)
p T'r11 1

= LP(QT ) + L
2
p ((0,T);W- ,2p(Q))

Gp is a Banach space with the norm

N
IFI G = inf{flf0LP + I Nfi L2 p : F = f0 + (f) "

P 0 ix.

Now we define a subset of Cp whose members have a certain approximation property.

I1-p (QT) = {F e Gp (Q T): there exists F , G e C (QT ) and A < - satisfying

(i) F +F in Gp(QT as c + 0

(ii) IF CG  Gc I NG  A

p p
(iii) For any Q' CC QT there exists c0 > 0 depending only on dist(Q',)Q) such

that IF 1 4 G in Q' for c < C .}

Let us denote by (F) the smallest constant A which works in the above definition.p

H2) FeG (Q T) for some p > N+2p 2rfroep---

See the remarks following the statement of Theorem 1.1 for some discussion of this

condition.

H3) We assume that 6 is locally absolutely continuous, R(0U) 0, and that there exist

functions i )P ., ( - ) such that

22

Ci) 8'(s) ) i 1(M) > 0 for e C -M,M]

(iiI ['') ) 26 > 0 for e (- -S u [S, )

where A,

We will say that a function i e V 2(Q T) is a solution of the initial amn bounilarv

value problem 1.1 if there -<is- v P L (Q T), v(x,t) = (u(x,t)) i.-. such chat

-4-



ff (vPt - Vu.Vp + f 0 W- fi )dxdt + 8 6(u0(x))n(x,O)dx = 0 (1.2)

for every e e E = [ e C I(QT) i(x,t) = 0 for x e 3(i or t = T).

Theorem 1.1. Under assumptions Hi, H2 and H3 the problem 1.1 has a solution

u e L (Q T C(Q T). The solution is unique in the class of bounded functions. The norm

lug depends only onL (QT

N, IS1 , T, OuU0 L , F Gp(QT , P I(-), 2(

The modulus of continuity of u at a point separated from 3 by a distance d

depends only on

N, lug L ( ,T (F) P , D I .),1 2 (.), d .
L (Q) P' 1

Remarks. (i) The condition H3 on 8 includes the case of the porous medium equation,

1

B(s) = Ismsins m ), 1

(ii) In the case of quasilinear, non-degenerate, parabolic problems of the type 1.1,

N+2
one obtains bounded continuous solutions for F G (Q ,P > 2 , [141. We expect

that this is true for 1.1 also, but the present proof requires the stronger assumption that

N + 2 +(Q),Gp contains L
P  

and also G , the positive distributions

belonging to Gp. To see this, let F = J *F where J is a standard mollifier.

Whenever F = f0 
+ 

(fi)x i we may define f0,fi to be zero outside QT' sc that this

definition makes sense. For the case F e LP(QT), F -F in and

IF 4 J *IFI = G + IFI in L
P 

by standard theory. In this case (F) = F • For

the case F e G (Q ), F = (J ff0 ) + (J*F for + (f ) i  Aqain, f * f in L
p2p T oF F01xi cO 0

f + f in L that F - F in G . Also, for c < dist(x,t),3Q ), F ) 0. we
iF i E P T C

may therefore take G = F and (F) = IF1G .

6I P

As an example, let Q (-1,1) in R and

f (x,t) 0 x < 0

1 x>0
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Then F = (f )x 0 (x), a mass concentrated on the surface {x 
= 

0, 0 < t < T} which is

a positive distribution belonging to G (Q T). More generally, if fi(xi,...,XNI is non-

decreasing in xi, then F = (f ) is a positive distribution.
Ix

knother type of sufficient condition that H2 be satisfied is the following. Suppose

1 N + 2F e L (Q T) and IFl = (gi) for some choice of qi e L2 , p > 2 , that isx. 2

JFI e L 2p((0,T)W -1I2p ()). It follows that F belongs to the same space, F = (f)

2p N + 2for some f e P > " Extending by zero and mollifying as before we have
i 2

IF C I I(fic x I < J *IF = (g iE )x - G1 i

for E 4 dist((x,t),3QT). In this case F + F, Ge + IFI in Gp and (F) = iIF1 U G

1 2p
More generally we could assume that F e L (Q T) and IF - f01 = (gi)xi, gi e L , for

som f e 
p

P >N2
+ 

212 ix.

some f eL p > 2 an example, let 0 - 1) in and

F(x,t I Then F = where g(x,t) =sign. Here g e LQ ) and
X02 Then ax logjxI T1 x log2 Ix

F e L 
I
(Q 

T ) 
but to no other L

p  
space.

(iii) For the proof of uniqueness see page 499 of [14) where the proof of the

corresponding assertion for the Stefan problem is given. This method requires that

g-1
p = C be locally Lipschitz and this follows from hypothesis H3. A uniqueness result

under less restrictive conditions on 0 may be found in [8).

(iv) Fxiotenco resiltq for problem 1.1 are provided hv nonlinear semiqroup

theory [2?, [101. The problem is rewritten as an abstract initial value problem

Vt + Av = f

v(0) = vn

where v [,T) * X, X is some Ranach space of functions, A is a nonlinear operator

in X, f r?,T! X and v0 e X. The boundary condition is incorporated into the

definition of A. If this operator satisfies certain conditions then it may be shown that

this prohlem has a solition v 0 C(0,T:X) if f P L 10,T:X) and v0 e D(A). In our case

n operator A corresponds to the expression "-A( v) ); qood choices for X are

~-1
) 1a1 H -1 .f h- proif- thl at the orrosnnndina onerators satisfy the conditions -f

j abstract -cqtenrce th-,rem ma v b- fooni in !41 and 131 respectively. See also [q0 for
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the case i = R 
N
. If we assume that f e L 2(0,T : H- (0)) then it can be shown that there-1dv 2 -1

exts a soltion v e C(0,T - H-I ()) which also satisfies e L 2(0,T H (Q)) and
2 1t

u (v) e L 2(0,T : H1 ()); see (31. Finally u also satisfies the equation 1.1 in the
0

sense of distributions.

(v) The method of the proof of Theorem 1.1 is to obtain appropriate estimates on a

sequence of functions which are then shown to converge to a solution of the inteqral

equation 1.2. Setting v = 6(u), the equation 1.1 becomes formally

v t = A(O(v)) + F (1.3)

We consider a regularized version of 1.3

vt = (n(v) + Ev) + F (x,t) (1.4) (n,c)

V(xO) Ov (x)

vi =0s 
T

If n" F ., v0 are smooth enough, ' 0, this problem has a classical solution
n nn

v (x,t). The function u (xt) n(nve(x,t)) then satisfies

[6n(U)d t A(u + £~n(u)) + F (1.5) (n,E)

u(xo) = nlVo (x))

ul 0

where Bn = 4,I. Therefore u , v together satisfy

ff (v t - V(u + ev) .V, + F C dxdt + f v(x),lp(x,O)dx = 0 (1.6) (n,c)

for p e E.

If we let F E F, v v0, n, $ n we hope to obtain a limit function

u(x,t) = lim (lim nu (x,t))

E-0l n-

which satisfies 1.1.

To nrove such a result we must bave variouls a priori bounds on the functions u and

nV.. It is relatively easy to ohtain hounds in the soaces L-(QT
) 

and W I'(Q), and

-7-



the case i = R 
N
. If we assume that f e L 2(0,T : H- (0)) then it can be shown that there-1dv 2 -1

exts a soltion v e C(0,T - H-I ()) which also satisfies e L 2(0,T H (Q)) and
2 1t

u (v) e L 2(0,T : H1 ()); see (31. Finally u also satisfies the equation 1.1 in the
0

sense of distributions.

(v) The method of the proof of Theorem 1.1 is to obtain appropriate estimates on a

sequence of functions which are then shown to converge to a solution of the inteqral

equation 1.2. Setting v = 6(u), the equation 1.1 becomes formally

v t = A(O(v)) + F (1.3)

We consider a regularized version of 1.3

vt = (n(v) + Ev) + F (x,t) (1.4) (n,c)

V(xO) Ov (x)

vi =0s 
T

If n" F ., v0 are smooth enough, ' 0, this problem has a classical solution
n nn

v (x,t). The function u (xt) n(nve(x,t)) then satisfies

[6n(U)d t A(u + £~n(u)) + F (1.5) (n,E)

u(xo) = nlVo (x))

ul 0

where Bn = 4,I. Therefore u , v together satisfy

ff (v t - V(u + ev) .V, + F C dxdt + f v(x),lp(x,O)dx = 0 (1.6) (n,c)

for p e E.

If we let F E F, v v0, n, $ n we hope to obtain a limit function

u(x,t) = lim (lim nu (x,t))

E-0l n-

which satisfies 1.1.

To nrove such a result we must bave variouls a priori bounds on the functions u and

nV.. It is relatively easy to ohtain hounds in the soaces L-(QT
) 

and W I'(Q), and
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this will be done in the next section. Furthermore, by a theorem due to Nash et. al., we
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00 0 0
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E
the sequence u

Ir the concluding sections some extension of the theorem will be mentioned. 1) The
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P 

appearing in

hypothesis H2 may be replaced by spaces

Lr((0,T) : Lq(Q))

for certain values of r and q.

SECTION 2.

The equation 1.4 (n,t) may be written in divergence form.

v = V.((4'(v) + t)v) + F (x,t) (2.1)t 7(n + Vv

If we let F C(QT v e C(Q, and n e C(3,, 4 > 0, then results from
F QT Or 0 $n eC() On

Chapter V, Section 6 of f14) guarantee the existence of a classical solution of

1.4 (n,c). We now specify further properties of v0 ., F. and tn.

(i) We have v 0 - 8(u0 e L by the hypotheses. Pick v 0 e C (i, such that

V 1 1 in t2( I). We may assume that Iv 0 CL . r V I and Iv DIL2 V 0 2"

(ii) Let F f + (f I where f and f are the functions assumei to
f£ i i

Pxis' in H2. Let A = (F) .
P

(iii) Sy mollification of t we obtain a seqt'ence e C (a) satisfying
-1

( = 0, , , and 4 * uniformly on bounded sets of R. Let -= The
n n n

,:,,nditions (i) and (ii) of H3 may be assumed to hold uniformly in n for





n and n" 6n is a function and 8n - B pointwise and uniformly on any set
I f I f

(- ' -BUr [B, -, B ) 0. Note finally that pointwise bounds on n and n may he
B Bn n

derived from knowledge of W 1•) and p 
(
"
) 

only.

The following will be considered the data of the problem 1.1

N, 1 ,21 T, Ou0 0

p, (F) from H2 (2.2)P

( . 2 from H3

First we state some lemmas which will be used in the proofs.

Lemma 2.1. There exists a constant C depending only on N such that

flu L
2 

N + 2)(Q Clulv
LT V2(QT

for u e V 2(Q T). (See pages 74-75 of [141.)

Lemma 2.2. Let Jm be a sequence of nonnegative numbers satisfying

1+b1m Ib

m+1 1 2 m

b > 0, K1 > 0, K2 > 1.

-- - 2b 1  b 1

Then lim JM = 0 provided J 0 kI k2 (See page 95 of (141).

Lemma 2.3. Supoose Li : [0,) [0,-) is nonincreasing and there exist constants

C ) 0, a > 0, 3 > I and k0 ) 0 such that

P~h) < C [w(k)] 8 for h > k > k0
(h - k)a

Then W(d + k 0 ) = 0 for d = [Cw(k 0 )B-1 2 -]. (See (121 p. 63.)

It will now be shown that all solutions of problems 1.4 anA 1.9 are h-mni-Ti hv n-me

constant independently of n and c. We will use the followinq notation: If v(X,t if
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using Holder's inequality, so that

2N+4 N+4+2 2T N+ +

,(v - k)+ 22 N+2 C (f f f2xdt + (f f If01N
+4 dxdt )1 2  (2.61

L2 (- 0 A (t) 0 A (t)

It follows that

1 2 2
+ + Of 2k) N+2 P)

2 12 N+2 2 1- ---

C(uf2 + k 2 Plf 0|2)J(k) P =Clj(k) P

Now let h > k ) k 0

N N

(h - k)
2
V(h)N+

2 = (h - k)
2
(f IAh(t)at) N+2

0

T N (N+-2 2

4(f (v - k) + N dadt)1 2

o Ah(t)

T +2(N+2)

S(f f' (v - k) N ddt)N+
2

O k(t)

I I

< CU(k) P by (2.7)

Thprefore

N+2 s - (1 - 1)(!+2)
j U c N -k p>N

(h -k) -12

-12-



T" T*

f f (v-k) 2dx)dt + f f a - dxdt r
o 0 Ak(t) o

ST* T*

f I I If li I dxdt + f f If 01(v - k) dxdt -
o 1~) X 0 S1

2 f f lv1 2dxdt + C f f f2dxdt + f f If l(v k)+dxdt
o A k(t) 0 Ak(t) 0 S1

Mk

where f
2  

f
i-1

This implies

f v(xT*) - k) +2dx + f f IV(v - k)+I 2dxdt

a~ 0 a

T* T

C(H f f 2dxdt + If f jfl(v - kl+ddt .
0 \(t) 0 0

Taking the supremum over T* e [0,T) we have

+2 T

-(v k)+I 2T c(f f f dxat + f f If (v - k)+ dxdt (2.5)
V 2(QT) 0 A (t) 0 Q0

+ 0

Since k > k0, (v - k) e V2 (0 T ) so we may use Lemma 2.1.

(v - k) l 2 " CI(v - k) ]V2(QT
)

,+2 V2 T
L 2

T T

4C cf f f 2dxdt + Jf I ( f (v -k+dt
0 N(t) 0 0

2N+4 N+4

< I -n_ 
2  

+ 2kT N+4 d i
-

+
227(-' Ns+2. + CH f fda f f Ifol t

L 2(2N 0 Ak(t) 0 Ak(t)
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By Lemma 2.3

N+2 aa 1 1 1

N dB-1 Bfor NCE N+2 2p
p o o d (C jj(k 0  2 ) C(k 0)+

That is

11

v(x,t) < k0 +C Ck 0 ) N2 2p //(2.8)

Remark. A similar estimate holds for -v(x,t), depending ~n

((x,t) e Qr . v(x,t) < - k)j.

Coroliary 2.1. There exist constants C1 and C2 depending only on the data 2.2, such

that Iv(x,t)l 4 C, and Iu(x't)1 4 C 2where v is any solution of 1.4 and u is any

solution of 1.5.

Proof. Choose k =v IV so that vi 4 k . We take a (x,t,v) ' ((v) + Ecj6. in
0L_ soT ())C2

the proposition, so that a.i .(X't'v) i. i j2 (k 0 ) for vi ;- k 0 Also Wlk 0 IQT

so that Iv(x,t)I 4 C, where C Idepends only on quantities measured by the data 2.2.

If u is a solution of 1.4 then Iu(x,t)l < n(Cll' and again this may be estimated by a

constant C2 which depends only on the data.

Corollary 2.2. Suppose the hypotheses of Proposition 2.1 hold with q,(x,t) _=0,

a ij(~~v&i 6 > 0

for all x,t,v, and

(N+22
Then lv(x~t)f rCR 2p where C depends on N, p, of O5,(f 2 ip and 6.

N+2
Proof. In the proposition we take ko = 0 and d(O) =IQ(RuI = CR *The conclusion

then follows from 2.8.//

Remark. The ahove estimate remains valid if it is assumed only that v R V 2(Q T flC(

and this will be used later. See p. 181 of 1141.

We turn now to estimates of first order derivatives of solutions of 1.4 andi 1.5. We

asqume that v(x,t) is a solution of 1.4 (n,cI and u(x,t) is a solution oF I.; (n,iL).



using Holder's inequality, so that

TT2N+4 N+4

1(v - k)+2 N ) C c(f f f2d-dt + (f .f I f01 N4dxdt) ) (2.61

L2(N 0 A (t) 0 A (t)

It follows that

12 2
+I (I + Of 12 k) N+2 P)

2 1

4;C(ufj + '+ 2 Plf 1 2 )( k)l =Cl(k)

Now let h > k > k0

N N

(h -k) 
2
VI(h)N+

2 
= (h- k) 

2
(f IA h(t)tat) N

2

0

T N !+2 2

4(f ( v - k) + N dt)2

O Nh(t)

T +_(N2

S(f f' (v - k) N ddt)N+
2

O \(t)

< Cp~k) p by (2.7)

Thpref ore

j U c N -k p>N

(h - k)' 2 cx
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Proposition 2.2.

(1) ItV 2l 2 C(cdata)
L (QT)

(2 VuL 2 ( )< C(data)

Proof. For the proof of (1), multiply 1.4 (n,E) by v and integrate over QT"

a I v2

If _L V2 )dxdt f ((u) + E) IVv 12dxdt

< ff foEV dxdt - f fivx idxdt.

Therefore

C If IVv 2 dxdt j 1 1V 2dx + If I Ive
L L

2 1 2 dxd t

+ E: If wi 2dxdt + If fd
+2- QT2 QT

Thus

cflVvfl22  y IV N2 + 20f I vi + 1 If 2
L L2 O L L. e C L

We have already estimated VRL in terms of the data and if I f 2 aLV may be

estimated by a constant depending on (F) and IS21. Therefore (1) is valid.p

For the proof of (2) we multiply 1.5 (n,c) by u and integrate over QT. Set
x

B(x) = f sn(s)ds. We then get
n

ff IVul
2
dxdt ( 2 1 B( n(V (x)))dx + 21ff a ulN + if 2 1

QT nL L- L1

Now IB(x)l 4 x (x) so that
n

IB( n(Vo0(x)))' < "n(ov 0 (x))I Iv C(x) l 4 Clv O(x)1
2

Thus the riqht hand side is bounded by a constant depending only on the data, as before.//

Remark. Similar estimates may be obtained for ut  and v t  by multiplying the equations

1.4 and 1.5 by (u + cv) . Both estimates degenerate as c + 0 is qeneral; however if
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CM~ 2 4a iji

la Ii (C(data)ij(L T(Q

All quanties occurring in Theorem 2.1 for this case are given in terms of the data, d,

and c, thus 2.9 holds. Since {0n) are uniformly Lipschitz on bounded intervals 2.10

holds .//

Remark. Theorem 2.1 remains true if the equation contains lower order terms satisfying

certain integrability conditions. Also, if the initial and boundary values are smooth

enough the solution will be Holder continuous on QT. For a precise statement see Chapter

III, Section 10 of [141. See also (123 pages 62-76 for the elliptic case.

Using the results of Corollary 2.1, Proposition 2.2 and Corollary 2.3 we may find a
n

subsequence nk + . and limit functions u (x,t) and vE(x,t) so that u + u
n n n]2

vE + ve uniformly on compact sets, V u + % , V 
k
v + VV weakly in L

Since n 0 uniformly on bounded sets, u C(x,t) = 4(vE(x,t)) in
nk

Now multiply equation 1.4 (n ,) by e E and replace n (v) by u.

n n nff ( kvc t- V(k + C kE) + fo E- )dxdt

+ f v0 (xlp(x,0)dx = 0

Now letting nk + we have

f f (v'j,P - V(u' + :v,) .V~p + f~ E f i * )dxdt

(2.11)

+ f voC(x),(lx,O)dx 
= 0

The function v (x,t) satisfies
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F e L 2(Q )and u (x) is smooth enough then actually flu I C independently of
T 0t L2( T

It is alSO possible to estimate the modulus of continuity of solutions of the equation

1.4 (nEc) for fixed e > 0. This follows from the following important theorem which will

also play a role later in the proof.

Theorem 2.1. Let v(x,t) be a solution of the linear equation

where 61tj 2 a E Y% Raii 6 > 0.
ij L(Q~

fof f2 e Lp(Q p>N+ 2
0i T ~ 2

and let WNLv -(i )e C I. Suppose Q, CcQ with dist(Q',aQT) > d.

Then v is Holder continuous in Q1.

The Holder exponent a depends only on N, 6 and p, while the norm lvi

depends only on N, C 1  5, P, if 1p, nf 2 and d.

Corollary 2.3. Let Q1 Cc QT~ with dist(Q',3Q.) > d. Let v be the solution of

1.4 (n,e) and u he the solution of 1.5 (n,e). Then

NVI r C(c,d,data) (2.9)

#UKf C(E,d,data) (2.10)
C On(Q,)

The exponent a depends on E and the data.

Proof. v(x,t) satisfies the linear equation

V - (a v) =f + (f
t ij"Xjx. lIE i X.

with a (x,t) W r(v(x,t)) + 0)6- so that

-19



v -= A( (V) + tv) + F (x,t)
t

v(x,0) - v (x) (2.12) (c)

T

SECTION 3.

Following [5] we now examine the behaviour of solutions near the points where they

vanish. Ultimately, of course, we must show that the solution is small in a neighborhood

of such a point; here it will first be shown that a kind of smallness property holds in an

average sense. This is the main nonlinear ingredient in the proof of Theorem 1.1. The

desired result follows as a corollary from the next proposition, which states that if a

solution is close enough, on the average, to its maximum in some cylinder, then it is

pointwise greater than half maximum on a smaller cylinder with the same vertex.

Proposition 3.1. Let u be a classical solution in Q(R) C QT of the equation

(O(u)] t = (u + F8(u)) + f0 + (fi )x (3.11

2 LP(NQT)

where f ,fi e for p > 2 satisfies H3) and also e e C1 (E). Let

u r C2 in Q_ and

0 < max u M 4 C2
Q(R)

Then there exist constants a. 
> 

0, p0 > 0 depending only on

N, C2 , V (C 2 1, 2 (.), p, Of p, of 2' p (3.2)

such that if

IQRIf f (M - uojdxdt 5M 0~
IQR Q(R)

then

u > ) in Q(E .
2 2

Proof. C will denote any constant depending only or N, C2 , 0 (C 2 , p,(-.). Recall that

noitwie estimates of f(s) epend only on the function W,(.).
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Set w = K-u so that

B'M- W)wt = A(w - E M- w)) - f 0 Cf x 33

Let C(x,t) be a smooth test function, 0 -; C 4 1 and C = 0 near aQ(R). Let

0 4 k < M. We multiply 3.3 by (w - k)+ 2 and integrate over

B(xo,R) x (t 0- R ,t0-R2 4.t)for t* e (0,R
2

II a'(M - w)w t(w - k)+ 2 dxdt =- ff V(w - £(M - w)).V((w - k)+42 )dxdt

- ff f0 (w -k)+ 2 dxdt

+ ff f.U(w - )) 2 )x dxdt

I 1+ II + III

I = - IV(w -k)j 2 C dxdt -tff RI(M - w)IV(w - k)+ I dxdt

+ 2c ff (Va(M - w).V)(w - k) dlxdt - 2 ff MVw - k) *VC)C(. k) dxdt

2 - ff IV(w - k)+ 1
2

2dxdt + C ff (wv - k) 2 1V 1
2
dxdt

4+

+ 2c ff (VB(M - W).V )C(w -k) +dxdt

I, ff C~ i( - k)x dxdt + 2 ff C(w - k)f i c. dxdt

f f I V(w - k)+ I dxdt + ff (wv - k) +2 2 ~ dxdt
4 I 2 2 2 2

+ 2 f cdxdt f f
fw~ok}i1

Thus

ff 6'(M - w)w (w - )+ dxdt + 1 rf I V(w - k) +12C2dxdt
2 2 -

Cf f (w -()02 V I J dxdt + Ir If 12(-k)dt

+ 2 ff f2 2 dxdt + 2c ff (VS(M - w) .7 )(w -1 k)dxdt (34
{w~k)

To estimiate the last term on the right in 3.4 we integrate hy parts once more.

-2r ff B(M - wU V -.7(w - k) dYdt - 2c. ff B(M - w)(w - k)+V.UV)dxdt (3.5,)

4 ff IV(w _ k) I
2 2 x t + C f! 1, 12 + IA , ~d

(w Ak 1, 1supp C

Loon-1.-
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r
To estimate the first term on the left in 3.4, define B(r) f 6(M k s)sds, so

0
that d + +at t(w - k) (M - w)(w - k) w t

We have

(w-k) U1  +2

B(w - u sds 2 (W - )1 = 2(C2
0

+
+ + (w-k)+

B(w - k)
+ 

< (w - k)
+ 

f '(M - k - s)ds 4 C(w - k)
+

0

Therefore

H BM w)w - k)d ~2 d~ = f B(w -k )C 21 d.
B(x0 ,R) t-t*

- 2 ff B(W - k)+; tdxt

> ill f (w - k )+2 21 dx - C ff (w - k)+lC dxdt (3.61
2 Blx0,R) t=t

*  
t

combining 3.4, 3.5 and 3.6 we obtain

f (w - k)+C2 dx + ff IV w - k) +122 dxdt
B(xoR) t=t*

C ff (IVC12 + A + I J)dxdt
(w)k} suppC

+ C ff 0o 1(w - k +2 dxdt + C ff f2 dxdt
w)k Isupo

Now, in the second term on the left the integrand may be replaced by

d((w - k)+)1
2
, since the error made may he estimated by terms of the form already

appearing on the right side of 3.7. If we now take the supremum of the left side over

t*e (0,R we obtain the estimate
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Set w = K-u so that

B'M- W)wt = A(w - E M- w)) - f 0 Cf x 33

Let C(x,t) be a smooth test function, 0 -; C 4 1 and C = 0 near aQ(R). Let

0 4 k < M. We multiply 3.3 by (w - k)+ 2 and integrate over

B(xo,R) x (t 0- R ,t0-R2 4.t)for t* e (0,R
2

II a'(M - w)w t(w - k)+ 2 dxdt =- ff V(w - £(M - w)).V((w - k)+42 )dxdt

- ff f0 (w -k)+ 2 dxdt

+ ff f.U(w - )) 2 )x dxdt

I 1+ II + III

I = - IV(w -k)j 2 C dxdt -tff RI(M - w)IV(w - k)+ I dxdt

+ 2c ff (Va(M - w).V)(w - k) dlxdt - 2 ff MVw - k) *VC)C(. k) dxdt

2 - ff IV(w - k)+ 1
2

2dxdt + C ff (wv - k) 2 1V 1
2
dxdt

4+

+ 2c ff (VB(M - W).V )C(w -k) +dxdt

I, ff C~ i( - k)x dxdt + 2 ff C(w - k)f i c. dxdt

f f I V(w - k)+ I dxdt + ff (wv - k) +2 2 ~ dxdt
4 I 2 2 2 2

+ 2 f cdxdt f f
fw~ok}i1

Thus

ff 6'(M - w)w (w - )+ dxdt + 1 rf I V(w - k) +12C2dxdt
2 2 -

Cf f (w -()02 V I J dxdt + Ir If 12(-k)dt

+ 2 ff f2 2 dxdt + 2c ff (VS(M - w) .7 )(w -1 k)dxdt (34
{w~k)

To estimiate the last term on the right in 3.4 we integrate hy parts once more.

-2r ff B(M - wU V -.7(w - k) dYdt - 2c. ff B(M - w)(w - k)+V.UV)dxdt (3.5,)

4 ff IV(w _ k) I
2 2 x t + C f! 1, 12 + IA , ~d

(w Ak 1, 1supp C

Loon-1.-



C(w - k) 2 () r f 1 7 12 + tC + f 2
)

d x d t

2 {wk},lsuppt

+ 2

ff If 0 1(w - k) Jxdt (3.8)
Q(R)

+ o

Since (w - k) e V 2(Q(R)) we may use Lemma 2.1 to get

IC(w - k)+ 
2 

(N+2 C ff ( IV12 + I An + t + f 2)dxdt

2-N (w>k~nsuppt

L(Q(R))

2N+4 N+4

+ c( f i1 +4 Nxdti+2 (3.9)

{w)k} suppC

This inequality will now be iterated on a sequence of shrinking cylinders. Set

k !! m = , + , = Q(Rm)" Choose smooth test functions C(x,t)
2 m 2 2m

such that 0 < rm 1, 1 1 on Qm+1' m = 0 near 3Q.' and

Cmv~j21 %ll%.1 s -. Define

M 1 ff (W _ kim) dxdt

Qm

We will show that {it satisfies the hypotheses of Lemma 2.2. It will follow that if
m

J0 = IQ(R)I (M - u)l
2
dxdt is small enough then ff (2 - u)+2dxdt = 0 i.e.

u onQ .

We have

N+2 2 2w+2 N+ 2
Q0IJm • ( f (w - kin ) ' dxdtN+2Qm+ r (w ) kin+

Om1 4- m1 +

Q+22

( f (w - kin .. ) N txdt 2Q {w N I - (3.WIN

Qm+-1
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r
To estimate the first term on the left in 3.4, define B(r) f 6(M k s)sds, so

0
that d + +at t(w - k) (M - w)(w - k) w t

We have

(w-k) U1  +2

B(w - u sds 2 (W - )1 = 2(C2
0

+
+ + (w-k)+

B(w - k)
+ 

< (w - k)
+ 

f '(M - k - s)ds 4 C(w - k)
+

0

Therefore

H BM w)w - k)d ~2 d~ = f B(w -k )C 21 d.
B(x0 ,R) t-t*

- 2 ff B(W - k)+; tdxt

> ill f (w - k )+2 21 dx - C ff (w - k)+lC dxdt (3.61
2 Blx0,R) t=t

*  
t

combining 3.4, 3.5 and 3.6 we obtain

f (w - k)+C2 dx + ff IV w - k) +122 dxdt
B(xoR) t=t*

C ff (IVC12 + A + I J)dxdt
(w)k} suppC

+ C ff 0o 1(w - k +2 dxdt + C ff f2 dxdt
w)k Isupo

Now, in the second term on the left the integrand may be replaced by

d((w - k)+)1
2
, since the error made may he estimated by terms of the form already

appearing on the right side of 3.7. If we now take the supremum of the left side over

t*e (0,R we obtain the estimate
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We now use the estimate 3.q with k = km+ = and Q(R) Q

+2(N21 N 'N+2N

!f r w - k 1  2 "xdt N
2  

((w - )+c dxdtj
Qm+ 1 Qm

c ff (IV ,I
2 + IA m, + Ikmtl + f2)dxdt

Qm {Wf m+k i

2N+4 N+4
+ C( ff If0 I N+4dxdt)N+2 I+ II

Q M flw~k MQm Wkm+ 1 }

N+2 2-- -2 1 ---
Irl 4 C(4mR P  

+ of2
1Q q {w ki+ 1 P

N+4 2 1
111 < C, 0 2 I kw , )1'12 p2 1 0 m -w m+,

O p m + p~r

Therefore

N+2 2-- 2 -- +1-
N+2 2 2 N+2 +
R Jm+ 1 (4m R 

p  
+ )If 

2  + if 0w 4 k + )v.11

Also

ff (w - km+ 2 dxdt o (km+ - k(2 Qm-1 jw ) k, I

Qm

so that

cRN+2 4
m

IQ w2 -mM

Uysinq this in 3.11 w nhtain

S 2 N+2 2 + I
-- (4mR P t IIF 

1 
2)RIf 4m T
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2 1
Let b = 2 > 0. The condition on p also implies that the net power of

1 N+2 p

appearing on the right side is nonneqative. Thus, finally

m 1+h hJ 1C C( + Ofl
2 

0+ Of _1 k m
m+1 p 0p 2(1+b m 1 2 m

M

It follows that J + 0 providedm

1 -L

b b 2  p2
(k 1 1 '
k k 2+

0 1 2 1 ~

Letting C =---, we see that if
2

I1 0

Q(f f(N uddt.

then u )-2 in Q .//

It follows from this result that if the solution is zero at the vertex of some



2 1
Let b = 2 > 0. The condition on p also implies that the net power of R

1 N+2 p

appearing on the right side is nonneqative. Thus, finally

m 1+h 1h
J 1C C( + Ofl

2 
0+ Of _1 k m

m+1 p 0p 2(1+b m 1 2 m

M

It follows that J + 0 providedm

1 -L

b b 2  p2
(k 1 1 '
k k 2+

0 1 2 1 ~

Letting a t *--, we see that if
2C

2
01 0

r(R l !f (m - u dxdt e %m

(R)

then u > 2 in //
2 2

It follows from this result that if the solution is zero at the vertex of some

cylinder then it must be bounded away from its positive maximum on some fixed fraction of

the cylinder.

Corollary 3.1. Let u be the solution of 1.5 (n,L) or else u u = lim u(. Let
n-

MQ(R) Qx (R C Q T u(x nt n , and 0 < max u M C
0 TQ(RI

Then there exist constants p0.i,1 depending only on the data and C, such that

JQ(R) C) {u ' M - y1
M 

T) IQ(R)l . (3.121

Proof. If u solves 1.5 (n,c) then u satisfies the conditions of Proposition 3.1, hence

it also satisfies the conclusions of the proposition. Since nu C u uniformly the same

is true for u . The constants a0 and p. are independent of n and c.



Choose 01 and -1 so that 2C2 B + 11 
< 

o0 and suppose that 3.12 fails. Then

ff (M - u)dxdt = ffu)dxdt
Q(R) Q(R)fu M-' MP

0 }

+ ff O (M u)dxdt
p0

Q(R)nfu>M-y M }

Thus

P0  p0ff (M - u)dxdt < 2C 2Q(R) n u < M - yIM }p + YM IQR)l
Q(R)

P0  P0
< (2C 21 + 1 )M Q(RJ < a0M IQ(R)I

By Proposition 3.1

u(x ,t ) min u(x,t) >
0 0 )R

2

a contradiction.//

SECTION 4.

Due to the special structure of equation 1.1, the solution u(x,t) is related to a

subsolution of a certain non-degenerate linear equation. This fact allows us to exploit

known results from the linear theory.

We will say that a function w e W 1'(QT satisfies wt - (aijwxj xi Gx,t) in

QT if

If (w t + a. w, )dxdt rf GidxdtQ j X, 0

T n 0T

for all % S W,(Q), 0.
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Proposition 4.1. Let v(xt) he the solution of 1.4 (n,Ej and z(x,t) = [v(x,tj -

where y > 0. Then there exists 6 > 0 depending only on y and the data such that

z t ( V,(-jx,tjVzj + IF I (4.11£

for some function a(x,t) satisfying

<-L( ) . (4.2)

Proof. Clearly z e W' T (QT). Choose a sequence q, e C (R) satisfying

0 4 gt(s) 1, gk(ss > D for s < -, and gk(s + [s - y]+ uniformly on
k k ~ ,gk(s) 0 fo 2 ( a

R. Set zk(x,t ( 
= 
gk(v~xt)).

We have

(Z ) V n'V) + ovz ) C IF I
kt - n k I (4.3)

pointwise in QT. Set

a(x,t) = n{(V(x,t)) + E v(x,t) >
2

+ £ v(x,t)( 2

Clearly 4.2 is satisfied for some 6 > 0 depending only on f and the data. Using the

fact that (z )t  Vzk = 0 a.e. on v ( 21
,  

it follows that

ff ((Z k)t + U(xt)Vzk.Vi)dxdt
QT

= f ((Zk)t + ( '(v(x
't )

l + C)7Zk. 7jdxdt

{v>Y1

= ff ( t - V.(z(( * £),z )'(vxdt
QT k n + k

4 ff IF I pdxdt by 4.3

01.0

if P e WI(QT), P 0. Lettinq k + - we get

ff (zt + a(x,t)Vzo7,P)dxdt c ff IFh1dxdt

Thus 4.1 holds.//
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Remarks. (i) - e L(Qj for any Q' [ QT by our construction. This will be used

later.

(ii) It is the presence of IF I insteai of . in this differential inequalityt C

which causes the complications in the condition on F.

Next we state a modification of a result due to kruzkov t131, which says that positive

supersolutions of linear, non-deqenerate, diverqence form equations have the property that

if they are qreater than one on a certain fraction of a oylinder Q(R, t,.o -'., are

bounded below by a positive constant co  on some suhIvlinier QP' I. A reg:i.t

nature is the essential step in a proof of Theorem 2.1.

Proposition 4.2. Let w e W I' (Q(RI, " C(Q(R) satisfy

(i) w - (ai.w ) ; 0 in Q(Rj
t 1) xjxi

i2 jN 1

L

(ii) w ) 0 in Q(Rj

(iii) There exists 2 > 0 such that
2[w

Then there is a constant cO > 0 ienendinq only on N, I ani -2 soch that

w(x,t);b c in Q --

Remark. This is proved in [13j under the assumpticrs that an - . - 0
1 1

B . The extension to supersolutions is immediate, ani thf i-r - i2 2

easy modification of tte proof qiven there.

Corollary 4.1. Let z e WI'I(Q()) C(Q(R)) atisfy

1

(i) z 4 (a .Z I + C in Q(R), G e L (Q(Rj)

Irl 2 1 0'i 
'  

I l It

(ii)r z , M i Q , .

(ii) s ' M in Q(Rj, M >
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M
(iii) tQ(R) > z 2 -I IQ (R)I for some 2 > 0.

2 22 2

Suppose also

(iv) The equation

zt = (aijx.z )x + O

has a solution z e w (Q(R)) r) C(Q(R)f.

Then there is a constant c0 > 0 depending on N, 5 and 2 such that

z 1 M - Mc + 2HzN in Q20 L (Q (R))

Proof. Apply Proposition 4.2 to the function

W=2(M + z + R q -z) /

L

We are now prepared to present the main step in the shrinking cylinder argument. Let

Qd = {(x,t) e Q T: dist((xt), Q ) > d). Fix d > 0, (x 0 ,t 0 ) e Qd' and let

Q(R) = Qx Ot0(R). For the rest of the section we let E < co where co  is the constant

d
corresponding to - from H2.

2

Lemma 4.1. Let v(x,t) be the solution of 2.12 (c) constructed in section 2. Let

y, M and 2 be given positive numbers. Put z = (v - y +. Then there are constants
d - N

R* and o depending on y, M, and the data, 0 < R* < -, 0 < o < , such that the

following is true for R < R*.

If (i) z < M in Q(R)

(ii) IQ(R) ri (z = oil > 2 IQ(R)l

then

z -M in Q t - R )

n - + n
Proof. Let z = (v

n  
y, where v is the solution of 1.4 (n,c). Since z . z

uniformly on Q(R) there is a sequence M + M, M
n > M such that z

n  
M

n  
in Q(R).

Also for n large Pnough

Q(R) n = 0) - ((R) (_ N , < -

2 2
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By Proposition 4.1 we have
nn

(Zn) t- V.( a(xt)Vzn) 4 IF I , G

where 6 4 a(x,t) e and 6 > 0 depends only on y and the data.

Let z be the solution of

t - V*(c,(x,t)Vz) + GCt

aQ(R)

The properties of a(x,t) and GC guarantee the existence of z. We noted earlier that
WI,1

e L (Q(R)), and this is enough to ensure that z e W (Q(R)), by Theorem 6.1,

Chapter III of (14]. By Theorem 10.1, Chapter III of [141 z e C(Q(R)). By Corollary 2.2

Izi - C(data,y,R)

L (Q(R))

Since also zn e W1
'
1 
(Q(R)) r) C(Q(R)) we may apply Corollary 4.1. We conclude

zn (nLozni Mn - + 20zM in Q
0 L (Q(R) )

for some constant c0  depending only on N, y and 8 . We now pick R* > 0 such that

Mc0

C(datar,R*) 4 c0
4

This choice depends on y, M, 62 and the data. Thus, for R < R* we have

Mc R
iMn n 0 2

zn • -Mc 0  2- in

Letting n +

Mc 02 R

z M - - M- in (2
2

Remark. This proof could be simplified if it were known that Proposition 4.2 is true

assuming only w e W I0(Q(R)). This is done in [15). It is then possible to work directly

with z instead of the approximations z
n .

Proposition 4.3. Let v he the solution of 2.12 (E) and u = t(v). Suppose

u(x0,t0 ) = 0, (x0 ,t0 ) e Qd" Then there exist sequences Mk 0, R 0 dependinq only
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on d and the data, such that

sup lu(x,t)f , M.
Q(R.)I

Proof. Define

P
0(M) = B(M - yM

p0

G(M) = O(y(M)(M) - y(M),01 M

P 0

R*( I, = R*( (M), (M) - Y(M),0 M

where y1' a, and p0 are the constants fron Corollary 3.1 and afy,M,2 2

are the constants from Lemma 4.2. Set

M, = nun1 L (QT)

Mk+ I = (S(Mk) - O(Mk)f

R, = R*(M 1

1 1
PO

= n 1 1Mk Rk

Clearly Mk *0, Rk* 0. We now show by induction that lul 4 M. on Q(R). This is

clear for j = 1. Assume, then, that

sup lul Q4k  (4.4)
Q(Rk)

+

Set z = [v - Y(M k) , so that

z ( B(M k - y(Mk

By Corollary 3.1

IQ(Rk k {z = IQ(R) (u {u 1k Mk k

We may now apply Lemma 4.1 with y, M, 62 replaced by y(Mk 13(M - y(Mk) It'd MI
2 k k k1 k

Note that ( . R*(Y(M)I)'(Mk) - Y(M) M We conclude that
k k 1 lk

- 28-



on d and the data, such that

sup lu(x,t)f , M.
Q(R.)I

Proof. Define

P
0(M) = B(M - yM

p0

G(M) = O(y(M)(M) - y(M),01 M

P 0

R*( I, = R*( (M), (M) - Y(M),0 M

where y1' a, and p0 are the constants fron Corollary 3.1 and afy,M,2 2

are the constants from Lemma 4.2. Set

M, = nun1 L (QT)

Mk+ I = (S(Mk) - O(Mk)f

R, = R*(M 1

1 1
PO

= n 1 1Mk Rk

Clearly Mk *0, Rk* 0. We now show by induction that lul 4 M. on Q(R). This is

clear for j = 1. Assume, then, that

sup lul Q4k  (4.4)
Q(Rk)

+

Set z = [v - Y(M k) , so that

z ( B(M k - y(Mk

By Corollary 3.1

IQ(Rk k {z = IQ(R) (u {u 1k Mk k

We may now apply Lemma 4.1 with y, M, 62 replaced by y(Mk 13(M - y(Mk) It'd MI
2 k k k1 k

Note that ( . R*(Y(M)I)'(Mk) - Y(M) M We conclude that
k k 1 lk

- 28-



MP

Z - (M k ) - (Mk in 1i, k k

Therefore

v < (M - A1(Mk) in 9(R k+1

and so

u < ((M k ) - O(M k = k+1 in Q(Rk+ I

The same argument applies to -u, hence 4.4 holds with K replaced by k + I.//

The content of the last proposition is essentially a modulus of continuity from helow

at any point where the solution vanishes. We wish now to examine the behavior of the

solution in the vicinity of a point where it is not zero. The next result states that in

some full neighborhood of such a point the solution must be bounded away from zero.

Define

Q (R) = (x,t) : Ix - x 01 < R,t 0 - R
2 

< t < t o  R2

Proposition 4.4. Let u and v be as in Proposition 4.3 and let {M k  and {Rk be thy

sequences given there. Let (x0 , t0 ) e Q2d and suppose

Mk0+1 < u(x 0 ,t 0 1

for some k 0 . Put

=min(Rk +1'
o 0

Then Mk 0

00

1 ) - in (- kp

Proof. The proof of Proposition 4.3 would show t: u(x 0 ft I stir u ' 'in I !,c

the induction hypotheses fail by the k('th step. The only way this can happn is if

-,
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The content of the last proposition is essentially a modulus of continuity from helow

at any point where the solution vanishes. We wish now to examine the behavior of the

solution in the vicinity of a point where it is not zero. The next result states that in

some full neighborhood of such a point the solution must be bounded away from zero.

Define

Q (R) = (x,t) : Ix - x 01 < R,t 0 - R
2 

< t < t o  R2

Proposition 4.4. Let u and v be as in Proposition 4.3 and let {M k  and {Rk be thy

sequences given there. Let (x0 , t0 ) e Q2d and suppose
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=min(Rk +1'
o 0

Then Mk 0
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for some k k. As in the proof of Corollary 3.1 this implies that u - in
0* 2 2

K k 0

Therefore u ) 2 in QR k) (i.e. in the backward cylinder with vertex (x0,t 0).
0  k 0

Now suppose that u(xl,t1 ) < 2 for some (x1tI) e Q'(k 0) with t1 > t * Note

that (x0 ,t0 ) e Q.tI(Rk0+1) and (x1 tI) Qd" Again the induction argument of

Proposition 4.3 will work up to the k0 'th step, showing that

u Mk0+1 in Q (Rk1 xl,t (k0+l

a contradiction.//

Proposition 4.5. The functions u (x,t) are equicontinuous on Q2d for any d > 0,

Proof. Fix d > 0, £ ( C. and n > 0. We must find 6 > 0 depending only on q,d and

the data such that

luc(xl,t 1  u Ex 0 t 0l n (4.6)

whenever (xi,t ),(x,t 0) e Q2d and

Ix - x0 1 + ItI - t0  < •

Let L = max(u E(xl,t )I,u E(Xo,t )I). If L ( D there is nothing to prove, so
rv0 2

assume that

L = u (x,t) >
00 2

(Otherwise apply the same argument to -u%. By Proposition 4.4 uc(x,t) >- on

Q (R) where R depends on n,d and the data. On this cylinder v (x,t) satisfies
x ot 

0

the linear equation

vt  V.(C(x,t)7v) + f + (f
1

where I(x,t) = t'(v(x,t)) + c ( + E > 9 > 0 where U is a constant dependinq
4

only on n and the data.

By Theorem 2.1 vc is Holder continuous on Q (Rj with a modulus of continuity
x0 1 t 0 2

depending only on d,n and the data. The quantity d in the statement of Theorem 2.1 is

R
here replaced hy -. Since t is locally Lipschitz the same is true for u . Thus we2w
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choose 6 so that v. and then again smaller so that 4.6 is satisfied, independently
2

)f c. II

We may now finish the proof of Theorem 1.1. Since 6 is uniformly continuous on

(-C2 ,C2 1, the functions u and v , c < co are uniformly hounded and equicontinuous

on Qd for any d > 0. Thus we may find limit function

u(x,t) = lim u (x,t)

Ck '0

Fk

v(x,t) = lim v (x,t)

Ek +0

where the convergence is uniform on compact subsets of QT" Clearly v(x,t) = 3(u(x,t))

and v(x,t) and u(x,t) are continuous on QT" Also, by Proposition 2.2

Vu , Vu weakly in L(QT

for some further subsequence.

If e E ) C 2(Q ) then equation 2.11 for c = k is

rI (vk*t - Vutk .V + r.v Ckt + fOk@ - fiF & )dxdt + I vk iddx O

QT k k ~i Q k

Letting k gives

ff (v4 t - 7u.Vp+ fo4- fi x )dxdt + ' (x)Ax,D)dx = 0
QT

This identity remains true for all ' , E. Hence u is a solution of 1.1 and

u e L (QT) r C(Q)-

Remark. The modulus of continuity depends on the sequence (M from Proposition 4.3,

which is generated recursivelv accordinq to the rule

Mk+ I = t( (M k  I (Mk

with M1  u No 4 C2 . This clearly depnnds on f and = 1 (a]onq with all the other
L

data), but it resains to he seen that it may he taken to depend only on the fulnctions



choose 6 so that v. and then again smaller so that 4.6 is satisfied, independently
2

)f c. II

We may now finish the proof of Theorem 1.1. Since 6 is uniformly continuous on

(-C2 ,C2 1, the functions u and v , c < co are uniformly hounded and equicontinuous

on Qd for any d > 0. Thus we may find limit function

u(x,t) = lim u (x,t)

Ck '0

Fk

v(x,t) = lim v (x,t)

Ek +0

where the convergence is uniform on compact subsets of QT" Clearly v(x,t) = 3(u(x,t))

and v(x,t) and u(x,t) are continuous on QT" Also, by Proposition 2.2

Vu , Vu weakly in L(QT

for some further subsequence.

If e E ) C 2(Q ) then equation 2.11 for c = k is

rI (vk*t - Vutk .V + r.v Ckt + fOk@ - fiF & )dxdt + I vk iddx O

QT k k ~i Q k

Letting k gives

ff (v4 t - 7u.Vp+ fo4- fi x )dxdt + ' (x)Ax,D)dx = 0
QT

This identity remains true for all ' , E. Hence u is a solution of 1.1 and

u e L (QT) r C(Q)-

Remark. The modulus of continuity depends on the sequence (M from Proposition 4.3,

which is generated recursivelv accordinq to the rule

Mk+ I = t( (M k  I (Mk

with M1  u No 4 C2 . This clearly depnnds on f and = 1 (a]onq with all the other
L

data), but it resains to he seen that it may he taken to depend only on the fulnctions



P1 and U2 from H3. Specifically, we must show that there are sequences

M 4 0, Mk 4 0 depending only on p 1 W2 and the rest of the data, such that

Mk Mk 1M (4.7)

To do this we write

where p(M) = M - ((M) - O(M)) = 4( (M)) - O( (M) - a(M)). We may assume that M - C(MI

M
is nondecreasinq on [O,C 1; if not, replace a(M) by C(M) = r min(a(rj,r8'(rwndz.

2 J
0

Then c satisfies 0 < G(M) ( o(M), 3'(M) 4 B'(M). Therefore (M) - (M) is

nondecreasing.

Next
Mp4 (M)

P(M) ) ( inf '(s) )o(M) > ( inf j'(s)a)o(M) , p 1 - o(MC p (M,
( )2' 2

S O(
M )  M11I (M)

2 P 2

and

P(M) 4 [ sup s-(S)JOCM) = sop )(() O(M aCM
S(B(M) s< (M) 0'(€(s)) I 1 2 22

Then p, and p2 are nondecreasing functions of M with p = a2(0) 0. (era,

sequences N , M by

M'1 M" M
1 1 1

= ' M!K -P 1(M )

Then 4.7 clearly holds for k 1; if we assume its validity for some k, th n

M
k+ I  Mk P(M k' i M'k - P(Mk/ 1 Mk - P(Mk = M 1

" k+ =N M k P(M k) > M - P(MZ) > MZ - P2(N =MN+

Thus 4.7 holds for all k which was to he shown.

--
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SECTION 5.

We turn row to the Caachy problem

I u) = %u , F (X," ) Q P = RNq < 'i,T '.
t T

N

u(x,0) = u sx x R

Rv a solution of 5.1 we mean a function u e V ,1 sth that there exists

s tha T

v e L (R ), v(x,t) = (u(x,t)) a.e. satisfyinq
loc T

j ( vt -u., + f , f dxdt 4 V (x ' ;x
t 0" i'sc.

R N
T R

for every P ( × tO,T)). Here v (x) (U (x)i and F has the form fr f

We retain the assumptions HI and H3 on u0 (x) and 1'. In place of 112 4,- asousmo

H4 (i) F e G (R; P> 2
p T2

(ii) If F =f + (f f is the function from the definition of t ,tn
£ t it x.i ,

If. I ( A for some constant A independent of c. Also p > 2.
1E LP(R)

Remark. T e proof of Theorem 1.1 is essentially local in natuire once we have the global

bounds obtained in Section 2. Thus we mu-st show how these results can he moi.if'ed for tl,

case of an unbounded domain so that the remainder of the proof may oroceed a hos re.

G(CR ) we mean fF P G( IF: there exists F , e CI(RT
) 

and A < ' sati fvinq
pT p T T

( i) F F inI C, (R as .0

(ii) IF f 9(; r A
hGp p

(iii) For any R_ , P there exists t 0 such that IF K; i. fr

r .} Condition ( ii) is 14 is ised only to ,'tain a qiobal I !oun ; the assompt in

that p 2 is a restriction only for N - 1. -he condition H4 is: iv nv

F eI(R) for r >

Theorem 5.1. 'Inder assumptions 111, 113 and 14 the probnem '.1 I i sa ,, is

U T I  
T

The norm IuIII and th modulis of continiitv of ,I 1,,bonI on'. .n N, in

constants from H1, '13 and f(4.
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Remark. (i) Existence results are known from nonlinear semiqroup theory for the -ase

F e L 1(R (u (x)) E L 1R ). One of the earliest existence results for eouations of
T 0

this kind is qiven in Sabinina [161, for the case F = 0, u 0(x) e L 2(R
) 

with

u 0(x) A 0. See also (17.

(ii) If it is assumed that ;-(u0) e L (R 
N
) r) L (R) then uniqueness follows from

[81. The uniqueness problem is currently under active investigation.

For the proof we study, as before, the reqularized problem

v t = n(v) + cv) + F (x,t) (x,t) e RT (5.3) (n,E)t nT

v(x,0) = v 0 C(x) xe R

and the corresponding problem for u = (v)
n

[n(u)]t = Mu + C n(u)) + F C(x,t) (5.4) (n,r)

u(x,0, = n(V0 (v))

We choose n and v., as in Section 2; in this case v., + v. in L2 () for any

N
bounded Q C R . F (x,t) is the function frct H4.

c

Let Br = {x : Ixi < r} and Kr = Br x (0,T). Suppose v c(x) = 0 for Ixi > r 0  A

solution of 5.3 (n,e) may be obtained as the pointwise limit of some subequence of

(Vr, r where vr satisfies

vt  ACn( v) + Ev) + F (x,t) (x,t) e K (5.5) (n,r,r)

~rv(x,0) v v0(x) x F? R

v(x,t) = 0 IxI =

For a discussion of this, see pages 492-496 of [141.

We now show that solutions of this problem are uniformly bounded, independently of

n,c and r. The maximum principle of Section 2 relied on the inequality

(k 0 ) < IQ TI

which is obvionsly of no use here.

-34-
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We will use instead the estimate

{IfI - k}I (5.6,

which is valid for f e LP(R T).

Proposition 5.1. There exists a constant C1  depending only on the data, such that

Iv(x,tI 4 C1

if v is any solution of (5.5) (n,E,r), r > r0 .

Proof. Apply Proposition 2.1 with QT = Kr and ko = max(1,211v01 -. We obtain the
L

estimate

v(x,t) < C(data,ij(k 0k 0

Set kI = --. We claim that
+

I(v - k) H L C (5.7)

r

where C depends only on the data. If this is done, then it follows from 5.6 that

+(v (I k 1- k )LP(K
j(k0  = I{v ; k0 }1 1[(v - k1 )

+ 
> k l H )

Thus, v(x,t) < C, where C depends only on the data. The same is true for -v(x,t).

To verify the claim, we multiply equation S.9 by pj(v - kl) 1 and integrate over

B for some fixed t, r > r0 .r0

f p(v - k 
I  p - 1v t d x 

+ p ! ( 'C(v) + E)v.'((v - kl ) +p-1

P-14 {v +p- d

pf 0 (v 1 )+
1 

x - f PiF v - k+P-) idX

Therefore

d (v - k 1+Ix - p(p - 1) r (n CCv) + k,)(v - k I P-2) v rdx
dt

'Ifq CC~v - k1 )+n-ldx + p - 1) ,r lf. II~ - kl)+-ivx Cdx

L . . .. . . . . . . . . .. . . . . ..-3 5 -
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p lf if (v - k 
p - 1 

dx + p(p - l)c (v - k J +P-2117v 2ix

1-1  -1

+~ 1.) rf2 1(v - k )+pI dx

H(kl

Recall that '(vj * ) 02(k I " 0 if v > k1. Choose 2 1 Then
'(v 1 1 2

(v , +P f - ) +p-1 p(p - )-2 +s-p-2
(v -k1 p if (v - k dx + f (v - k dx

r if 0 I dx + (p - 1) (v - k1

+ r If I Pdx + p
- 1(p - 21 (v - k

02(k 1  - 2 21(k 1

Set q(t) = r (v(x,t, - kI) dx. We have just shown
B( r)

q'(t) - ag(t) r h(t)

where h(t, f If (x,tIP dx + P -- I ) if (x,t
1
l
p
dx and max(p -1 (p - 1(p -2,

O 1 2 (k 1 C21 1 2 (k 1)

'3y hypothesis q(0) 0. Hence, bv Gronwall's inequality

t T
qlt) e

t r e-'h(s)ds ( e , h(svs
0 0

and so
T T

ll(v - kl+ it r q(tdt ( Te r h(sds
L o(K

r

= Te f
r f 11 + f n",OC r 2 (k ) f-

which is houndel by some constant dependinq only on the data.//

it now follows that the qame eIsfimate holds for solutions ,t .3 (ni I, an Ila'

solultions f I., I , are i1o uniformly Nun i-1.

N4ext we derive local L2 estimates for .in 7v.

-3r, -
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r: lk

n
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for some subsequence nk, and the convergence is nniform on compact sets. By Propositionn n

5.2 n V kv 3re weakly comnact n n' Fixed crmpact set in RT . By a diagonal

argument we may find functions u' andi v' 1 (T such t'at
in, T)'

u. u

weakly in L(K for any r, and for ssme further sorence which w- aiain call nk.

It follows that u = Vu, V - Vv in the sense of listributions, hence also in
9

Lloc (RT . We thus obtain, analoqously to 2.11

K"' - 7;(u +.vE" i f f - f. )dxdt + v (x),(xfldx = (51
• t ii .

R1

N
for - e C (R . [0,T)).

The local results of Sections 3 and 4 remain valid; the modulus of continuity of u

depends on tho initial and houndary conditions and on i21 only throuqh its dependence on

the qlohal L norm. In particular, the functions u , v are equicontinuous. Thus

we may detin'
I-

u(x,t) = lim u "( ,t)

rk
v(x,t) = lim v (xt)

whre the converronce is uniform on compact sets. Clearly v(x,t) = C(u(x,t)) for
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(x,t) e R . As before we have Vu e L 2C(R and 7uc
k  

Vu weakly in L
2 

on anyT Ic T

compact set.

Thus we may pass to the limit in 5.10 through the sequence ckI which yields 5.2.

Theorem 5.1 is therefore proved.

Remark. This result extends to arbitrary unbounded space domains C1 as long as there

exists a sequence of subdomains I CC such that n has smooth boundary, Qn C ?n 0 n n+1

and 0 
=  

U Q . We specify zero boundary conditions on a x (0,T) as before.
n=1 n

SECTION 6.

Consider again the case of a bounded domain I. In place of the L'
p 

conditions on

F we may assume instead conditions involving the spaces L!'r(QT) , where

Lq'r(Q
)

= {f measurable on Q T q,r, < }
T TT

r 1
T

fill )q d t )
r

q,r,%Q 6 a

Analogously to the L
P  

case we define

G((Q =F P I'(QT) F = f + (f )xi 1 f
'f 
2 e L qr (QT

Gq,r( T T 0 ix. n' T

and then define Gq,r(QT) in the obvious way, The correct generalization of p > 2
2

is - + -- < 1, r ) 1, q 1.
r 2q

In this section we assume the hypotheses Hi and H3 and that

F1 N
r(Q) for 2q

As before, in the nondegenerate case, it is known that the problem 1.1 has honde.

continuous solutions for F e G q,r(QT) with the same condition on the iniices r an! 7.

For the proof we need a generalization of Lemma 2.1.

Lemma 6.1. There exists a constant C Ionendinr only nn N si,-h ,if

Ilu I Cuq,r,QT  v C"

1'A
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for u e V,(Q provided q,r satisfy
T

1 N

2N[e2,o=] iq +2, ----- N •3

re(2,] q E? N(2,2

r e 4,' oe 2,J N-i

See pages 74-75 of [141.

Theorem 2. 1 rema ins trut? wi th these mgjif i d cond ition, on f5  and fl.

The proof of interior continuity proceeds as in the original case; non-trivial

modifications are necessary only in Propositions 2.1 and 3.1. We sket-h here the re ,,.l

changes. Put

r r
q' r-l q- I

2
p +

T

u( = IAk(t) I dt
0

The pair (2p,2p9) satisfy the requirements of Lemma 6.1, i.e.

1 N N
2pb 4p 4

In Proposition 2.1 no chanqe is necessary up to Equation 2.5. Then use Lemma o.I toeriv,-

T

fl(v - + U2 rc f f
2
lxit

2p,2pO 0 A (t)

( 2o
q
)' 2

T ____

+ ( f Ifn(2p1dx 1 2p ' I ( (2prp 'I
0 A k(t)

w .1rr i prime donotrs the ustual Holder conitiqate exponent. Prnm thiz it fnllows that

L- k hN n

-40-
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.o ,~ x 2p Q; ' > 1 s itne - + 1 hor -e LmyrrA 2. 3 a~irl e.R as let
r r

14' p. 181 fnr a si qhtly different pr,,of in the non-s- enerat,. "a1.e.

In Proposition 3.1 we may eoitinue as before until line 3.8. Then aia : ,

r.1 to dIerive ar. estimate for t(w ~ k) 2, 2p"

Deline

(I

u~k Q;,'} * 5 1(111 0

J J

where

Akt) =x P B' \.R j : wlxtI Y

The inequalities

/ '1I

m(km+ 1 Qm) 0

and

IQ0 r i11(w - km+ 
11
2

Q 0 m- 4- 1 211, m +

are valid. Prom these we can aqain derive the ineniallt'

1-h
k I

m"ir1 1

with

b i  
+ I .1 (l

The cases I o I and ) < 1 must he ('n eidroft !,riarat,'f-v.

14ith th .,,r .h.ir.q the ret of ths'r' ,n o 'r. .e.ls r1 ,-

Theorem 1.1 remains valid uler these conlitien on

-ii-
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